US009417891B2

a2 United States Patent

(10) Patent No.: US 9,417,891 B2

Beveridge 45) Date of Patent: Aug. 16, 2016
(54) UNIFIED STORAGE/VDI PROVISIONING 2010/0211956 Al* 82010 Gopisetty G06F7%5/(1)§§
METHODOLOGY 2011/0246984 Al* 10/2011 Sharpetal.ccccccovveeeenn. 718/1
. . 2011/0251992 Al* 10/2011 Bethlehemetal. 707/610
(75) Inventor: Daniel James Beveridge, Apollo Beach, 2012/0151163 Al* 62012 Ripberger GOGF 11/2071
FL (US) 711/162
2012/0173778 Al* 7/2012 Povaliaev et al. 710/68
: . 2013/0198742 Al* 8/2013 Kumaretal. 718/1
(73) ASSlgnee' VMware’ Inc" Palo Alto’ CA ([JS) 2013/0263120 Al E3 10/2013 Pa-tll """""""""""""" G06F 9/45558
. 718/1
(*) Notice: Subject to any disclaimer, the term of this 2013/0282672 A1* 10/2013 Tashiro etal. 707/692
patent is extended or adjusted under 35 2013/0290955 Al* 10/2013 Turnerc...... HO4L. 41/12
U.S.C. 154(b) by 207 days. 718/1
() by Y 2013/0304899 Al* 11/2013 Winkler HO04L 67/34
(21) Appl. No.: 13/493,939 709/224
(22) Filed: Jun. 11, 2012 FOREIGN PATENT DOCUMENTS
WO 2008141900 A1 11/2008
(65) Prior Publication Data
OTHER PUBLICATIONS
US 2013/0332610 Al Dec. 12, 2013
Meyer, Dutch T., et al. “Parallax: virtual disks for virtual machines.”
(51) Int.ClL ACM SIGOPS Operating Systems Review. vol. 42. No. 4. ACM,
GOG6F 9/44 (2006.01) 2008.*
GOGF 9/455 (2006.01) (Continued)
(52) US.CL
CPC GOGF 9/4445 (2013.01); GOGF 9/45558 privnary Examiner — Scott B Christensen
(2013.01); GOGE" 2009/45583 (2013.01) Assistant Examiner — Sean Concannon
(58) Field of Classification Search

None
See application file for complete search history.

(57) ABSTRACT

Methods, computer-readable storage medium, and systems

(56) References Cited fiescribed herein .facili.tate provisioning a virtual .dfzskFop
infrastructure having virtual shared storage. A provisioning
U.S. PATENT DOCUMENTS manager receives a desktop pool type and provisions virtual
shared storage among a cluster of hosts. The provisioning
‘7"2 ég’ggg gzz ‘6‘; 58?8 Elhu_ltz """""""""""""" 715/1 18941‘ manager configures the virtual shared storage based on the
,730, erington
7218515 BL1* 10/2010 Umbe%ltocker atal T11/154 desktop pool type and provisions at least one virtual machine
7:9 51 :470 B2 52011 Tokuda et al. to each host in the cluster of hosts. The provisioning manager
8,230,069 B2* 7/2012 Korupolucc....... 709/226 optimizes the virtual shared storage by receiving a storage
8,464,267 Bz: 6/2013 Uyedaetal. 718/105 performance benchmark from each host and performing an
g’ggg’g;} gé N i?ggg ;I{a}.lalom etal. . - 702/1282/41‘ optimization on the cluster of hosts if the storage performance
8950293 B2* 2/2015 K:igéhetal 154 benchmark results do not meet a threshold within a pre-
2003/0120676 Al* 6/2003 Holavanahalli etal. 707/102 defined tolerance.
2009/0037680 Al 2/2009 Colbert et al.
2010/0070978 Al* 3/2010 Chawlaetal. 718/105 20 Claims, 2 Drawing Sheets
v 200
| Receive a deskiop pool ype [0
i
‘ Provision virtual shared storage using one or more hosts in a cluster |7220

‘ Configure the virtual shared storage based on the desktop pool type |7230

Connact the virtusl sharad storage to a virtualization manager on
each host in the cluster

Provision at least one virtual machine to each hest in the cluster of
hosts 250

|—240

Request a siorage performance benchmark from each of the at
Ieast one virtual machines

—260

200 —

v
Receive benchmark results from each of the at Isast one virtual

¥

PN

|—270

. 280
.~ Determing i the ™.
" benchmark results

< meata minimum "]

. threshold

/

Perform an
optimization on the
cluster o improve
- benchmark results

. I
—295

US 9,417,891 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Nurmi, Daniel, et al. “The Eucalyptus Open-Source Cloud-Comput-
ing System.” Cluster Computing and the Grid, 2009. CCGRID’09.
9th IEEE/ACM International Symposium on. IEEE, 2009.*
Gallagher, Simon (Dec. 4, 2009) “Comparing the I/O Performance of
2 or more Virtual Machines SSD, SATA & IOmeter.” Retrieved from
https://web.archive.org/....//vinf.net/2009/11/19/comparing-the-io-
performance-of-2-or-more-virtual-machines-ssd-sata-iometer[Jul.
25,2014 7:49:44 AM].*

VMware vSphere Storage Appliance, Copyright 2012 VMware, Inc.,
pp. 1-3.

Daniel Beveridge, Accelerate VDI-VSA Based I/O Designs, pp.
1-13.

International Search Report and Written Opinion for Application No.
PCT/US2013/044465 dated Sep. 13, 2013, 10 pages.

Edwards et al., “High-speed Storage Nodes for the Cloud”, 2011
Fourth IEEE International Conference on Utility and Cloud Comput-
ing, pp. 25-32.

* cited by examiner

U.S. Patent Aug. 16, 2016 Sheet 1 of 2 US 9,417,891 B2

» 100

VIRTUAL DESKTOP MANAGEMENT (VDM) SERVER

150
152 ADMIN. PROVISIONING
~| CONSOLE MANAGER
154 156

DESKTOP MANAGEMENT SOFTWARE

A

VIRTUAL MACHINE MANAGEMENT SERVER

130
SOFTWARE INTERFACE
‘7
135
116
'/
160
110 112 114
’_"_‘ JR
105> vi|v| v Vv AIRVARY, Y% AIRZRY; Y%
MMM ™ M MM M 7 M MM M 7| M
124 = VIRT.S/W = < VIRT.S/W |« + VIRT. S/W
126 —— Storage Manager > Storage Manager Storage Manager
120~ Hardware Hardware |Storage— 1 129| Hardware Storage
PHYSICAL CMPTR PHYSICAL CMPTR PHYSICAL CMPTR

FIG. 1

U.S. Patent

290

Aug. 16, 2016 Sheet 2 of 2 US 9,417,891 B2
s 200
Receive a desktop pool type 210
y
Provision virtual shared storage using one or more hosts in a cluster |—220
y
Configure the virtual shared storage based on the desktop pool type | 230
/
Connect the virtual shared storage to a virtualization manager on 240
each host in the cluster
/
Provision at least one virtual machine to each host in the cluster of
—250
hosts
Request a storage performance benchmark from each of the at 260
least one virtual machines
Receive benchmark results from each of the at least one virtual 270
machines
e 280
__Determine if the Perf
benchmark results ™. i © ?.rm an h
. meeta minimum ;P opl) imization on the
“_ threshold cluster to improve
benchmark results 295
Y
Done — 297

US 9,417,891 B2

1

UNIFIED STORAGE/VDI PROVISIONING
METHODOLOGY

BACKGROUND

Virtual Desktop Infrastructure (VDI) refers to a system of
providing complete centrally-managed desktops to users
using computer virtualization technology. VDI is used to
create a large number of independent computing environ-
ments for a large number of users. The desktop users may be
grouped together based on similar software and computing
needs. The desktops themselves are correspondingly grouped
together in “desktop pools” that may be provisioned, man-
aged, and deleted as single entities. In VDI, each desktop is
exported to the user from a virtual machine (VM) that is
assigned to the user. The desktop pools are associated with
resources in the datacenter, including, but not limited to,
compute resources, memory, network, and storage.

Storage in the datacenter is sometimes shared among desk-
top pools. Known shared storage may be provided by storage
area network (SAN), network-attached storage (NAS), and
other similar systems. Known shared storage systems inher-
ently add latency to storage operations due to the storage
system being remote from the computer systems, or “hosts”,
that host the virtual machines associated with the desktop
pool. An alternative to known shared storage systems is vir-
tual shared storage, which uses the local storage of each host
in a cluster to create an abstract storage layer. The local
storage provides reduced latencies and the abstract storage
layer provides benefits similar to those provided by tradi-
tional shared storage.

Virtual shared storage eliminates the need for traditional
shared storage, but requires that each host in a cluster be
individually administered to provision and configure the vir-
tual shared storage. Moreover, configuring each host for
improved virtual shared storage performance presents an
optimization problem that is both time-consuming and bur-
densome due to the time required to measure performance of
a cluster and the work required to separately configure each
host. Accordingly, there is a need for an automated system
and method for provisioning a VDI for use with virtual shared
storage.

SUMMARY

Methods, computer-readable storage medium, and systems
described herein facilitate provisioning a virtual desktop
infrastructure having virtual shared storage. A provisioning
manager provisions virtual shared storage among a cluster of
hosts. The provisioning manager provisions virtual storage
resources on each host in the cluster of hosts. The provision-
ing manager may deploy a virtual storage appliance (VSA) or
other hypervisor-based cluster storage functionality. The pro-
visioning manager optimizes the virtual shared storage by
receiving a storage performance benchmark from each host
and performing an optimization on the cluster of hosts if the
storage performance benchmark results do not meet a pre-
defined threshold.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary virtual desktop
infrastructure (VDI) having virtual shared storage.

FIG. 2 is a flowchart of an exemplary method for deploying
virtual machines to the VDI in FIG. 1.

DETAILED DESCRIPTION

FIG.1is an exemplary virtual desktop infrastructure (VDI)
100 having virtual shared storage and a plurality of virtual

40

45

55

60

65

2

machines (VMs) 105 on physical computer systems, or hosts,
110, 112, and 114, collectively known as a cluster 116. Each
VM 105 provides a “desktop” (not shown) to a user of the
VMs 105. The desktop is an interactive user environment
provided by a guest operating system and applications run-
ning within the VM, and generally includes a graphical dis-
play, but may include other outputs, such as audio, indicator
lamps, tactile feedback, etc. The desktop also accepts input
from the user in the form of device inputs, such as keyboard
and mouse inputs. In addition to user input/output, the desk-
top may send and receive device data, such as input/output for
aFLASH memory device local to the remote user, orto alocal
printer.

Each physical computer 110, 112, and 114, includes a
hardware 120, a virtualization software, or manager, 124
running on hardware 120, and one or more VMs 105 execut-
ing on hardware 120 by way of virtualization software 124.
Virtualization software 124 is therefore logically interposed
between, and interfaces with, hardware 120 and VMs 105.
Virtualization software 124 may be implemented directly in
hardware, e.g., as a system-on-a-chip, firmware, FPGA, etc.
Hardware 120 includes at least one processor (not shown),
wherein each processor is an execution unit, or “core,” on a
microprocessor chip. Hardware 120 also includes system
memory (not shown), which is general volatile random access
memory (RAM), a network interface port (NIC), a storage
system 122, and other devices. Storage system 122 may
include one or more non-volatile storage devices (not shown),
such as hard disk drives, solid state drives (SSD), and the like.
Virtualization software 124 is sometimes referred to as a
hypervisor, and includes software components for managing
hardware resources and software components for virtualizing
or emulating physical devices to provide virtual devices, such
as virtual disks, virtual processors, virtual network interfaces,
etc., for each VM 105. Each VM is an abstraction of a physical
computer system and may include an operating system (OS)
such as Microsoft Windows® and applications, which are
referred to as the “guest OS” and “guest applications,” respec-
tively, wherein the term “guest” indicates it is a software
entity that resides within the VM. Virtualized storage devices
are used to store the guest OS, guest applications, and guest
files. Virtualized storage devices such as virtual disks may be
backed by virtual disk image files on storage systems 122
within one or more datastores, as described in U.S. Patent
Application Publication No. 2010/0070978 to Chawla et al.,
which is hereby incorporated by reference in its entirety.

Each physical computer 110, 112, and 114 includes a stor-
age manager 126 that manages each respective storage sys-
tem 122. Storage manager 126 is configured to provide a
storage layer abstraction that includes virtual, or logical,
shared storage using storage systems 122. At least one datas-
tore may be provided by the storage layer abstraction such
that virtual disk image files may be stored within the virtual
shared storage.

Shared storage accessible by physical computers 110, 112,
and 114 enables virtualization software 124 to provide high
availability features, such as the ability to restart a VM 105
when a physical computer fails. Using shared storage, VMs
105 can be migrated from one physical computer to another.
As shared storage is typically provided by a storage area
network (SAN), network-attached storage (NAS), and/or
both, virtual disk images are typically stored remotely from
the physical computer on which the corresponding VM is
executing. The result is latencies much higher than latencies
for storage systems 122. Virtual shared storage combines the
added features of shared storage while using storage systems
122 for reduced latencies. Virtual disk images may be stored

US 9,417,891 B2

3

locally with respect to the physical computer on which the
corresponding VM 105 is executing. Virtual disk images, or
portions thereof, may be replicated to other areas of the vir-
tual shared storage that are stored on other physical comput-
ers, thereby providing data redundancy. As storage manager
126 abstracts the virtual shared storage, virtualization soft-
ware 124 may interact with virtual shared storage as if it were
non-virtual shared storage.

For example, storage manager 126 may be implemented as
a virtual storage appliance (VSA). The VSA is software that
runs within a VM 105 on each physical computer 110, 112,
and 114 to create a storage cluster. The VS A provides virtual
shared storage by interfacing directly with storage systems
122 on each respective physical computer 110, 112, and 114,
and providing a logical file system that is locally hosted and
replicated among storage systems 122 within the storage
cluster.

As another example, storage manager 126 may be imple-
mented as a virtual storage area network (VSAN) by virtual-
ization software 124. More particularly, storage manager 126
may consolidate one or more storage systems 122 to create a
VSAN interface, e.g., iSCSI, accessible by virtualization
software 124. One or more datastores may be stored on one or
more logical disks, i.e., LUNs, on the VSAN.

Virtual Machine Management Server (VMMS) 130 pro-
vides a software interface 135 that, among other things,
allows other programs to control the lifecycle of VMs 105
running on physical computers 110, 112, 114, that are man-
aged by VMMS 130. VMMS 130 may provide other VM
management and manipulations than those specifically men-
tioned here.

Virtual Desktop Management Server (VDMS) 150 may be
a physical computer system or a virtual machine that runs
desktop management software 152. An exemplary VDMS is
described in U.S. patent application Ser. No. 11/395,012,
filed Mar. 31, 2006 by Puneet Chawla, et al. Desktop man-
agement software 152 manages pools of computer resources
to run VMs 105 on a cluster or set of clusters typically con-
taining multiple servers with CPUs, memory, and communi-
cations hardware (network). In the embodiment shown in
FIG. 1, desktop management software 152 includes a number
of modules, including an administrative console 154, and a
provisioning manager 156.

Desktop management software 152 interfaces with VMMS
130 using software interface 135 to control VMs 105. For
example, VMMS 130 may allow desktop management soft-
ware 152 to: (a) discover computer, storage, and network
resources; (b) create logical compute pools providing fea-
tures like automatic CPU and memory load balancing; (c)
create VMs with one or more virtual disks on local or shared
storage, e.g., clones with full or sparse disks; (d) create VMs
anchored to a base virtual machine (e.g., as described in U.S.
Pat. No. 7,951,470, granted May 10, 2011, and entitled, “Syn-
chronization and customization of a Clone Computer” and
incorporated herein by reference); (e) monitor storage sub-
systems, including, but not limited to, storage consumption of
individual disks, storage consumption of virtual machines as
a single unit and virtual machine file system monitoring (free
space, total space, etc); (f) perform power operations on vir-
tual machines (i.e., power on, power-off, suspend, resume,
checkpoint, etc.); (g) perform offline migrations of virtual
disks from one datastore to another; (h) perform hot storage
migration wherein VM disks are migrated during operation of
the VM (e.g., as described in U.S. patent application publica-
tion No. 2009/0037680, incorporated herein by reference);
and (i) provide an out of band communication channel to
software programs running inside the virtual machine.

10

15

20

25

30

35

40

45

50

55

60

65

4

Administrative console 154 provides a remotely-acces-
sible user interface to an administrator to manage the con-
figuration of desktop pools. In one embodiment, a graphical
user interface may be exported via hypertext transfer protocol
(HTTP) and accessed by a commodity web browser. Alterna-
tively, a command-line interface or a rich client can be pro-
vided to local or remote users. Administrative console 154
allows the administrator to perform a plurality of functions,
such as: (a) create desktop pools, as described herein; (b)
associate desktop pools with the VDMS; (c) associate a desk-
top pool with a master image; and (d) define VM state poli-
cies; etc.

Users of VMSs 105 can generally be categorized in terms of
their job functions, and accordingly the required applications
and configurations of their desktops. For example, users in an
engineering “pool” may require access to CAD/CAM soft-
ware, whereas users in an accounting pool may require access
to particular accounting software. It is generally useful to
group user desktops together in a manner consistent with such
groupings of the users, so that computers accessed by engi-
neers, for example, are configured with software required by
engineers, whereas computers accessed by accountants are
configured with software accessed by accountants. In VDI
system 100, for example, users may belong to a particular
user pool, and their corresponding VMs 105 may be assigned
to a corresponding desktop pool. A desktop pool is a logical
manageable entity that includes a plurality of similarly-con-
figured VMs. Each VM of a desktop pool may have delta disk
image associated with the VM and a common “master image”
(sometimes referred to as a “template”) that is common to all
the desktops in the pool. The master image may include
installed software useful for the members of the correspond-
ing user pool.

Desktop pools can be categorized into two broad catego-
ries: non-persistent and persistent. VMs 105 in non-persistent
desktop pools are stateless, i.e., the desktop state is restored to
the original state after every user session. For non-persistent
desktops, any changes written to the virtual disks are lost at
the end of the user session. Therefore, each time a user logs
off, the desktop is restored to its original “pristine” state. If a
user is assigned to a pool of non-persistent desktops, the user
may be assigned to any VM 105 in the pool at the time the user
logs in, since they are all identical. There are many use cases
for non-persistent desktops, such as for data entry, informa-
tion kiosks or process terminals, etc.

VMs 105 in persistent desktop pools are stateful, i.e., the
desktop state, including the state of the files and applications
therein, is maintained. For persistent desktops, any changes
written to the virtual disks are preserved and are available at
the next user session. There may be hybrid states, such as
maintaining persistence for a period of time, but periodically
reverting to the “pristine” state. In some embodiments, the
desktop administrator can define how frequently, or under
what conditions, the “revert to pristine state” operation
should be performed.

Desktop pools have varying data storage performance
requirements that are a function of the type of pool, i.e.,
non-persistent vs. persistent, and/or the corresponding use
case, i.e., which applications are used. For example, for non-
persistent pools, data corruption within the VM is not fatal
because the entire state of the VM will eventually be lost.
Accordingly, data writes in non-persistent pools may be
immediately acknowledged, whether the data has been writ-
ten to a disk or not. The data storage performance requirement
of a desktop pool may be expressed in Input/Output Opera-

US 9,417,891 B2

5

tions Per Second, or IOPS and/or other known metrics, such
as latency, and any calculation thereof, such as an average or
a standard deviation.

Provisioning manager 156 is configured to coordinate the
provisioning, or creation, of virtual shared storage and the
provisioning of VMs 105 on physical computers 110, 112,
and 114. Provisioning manager 156 may be accessed via a
web interface provided by admin console 154. Provisioning
manager 156 communicates with VMMS 130, virtualization
software 124, and/or storage manager 126 using application
programming interfaces (APIs) and/or any suitable commu-
nication framework.

Provisioning manager 156 is generally used by an admin-
istrator to establish a VDI environment on physical computers
that do not already have VM, i.e., new physical computers.
However, provisioning manager 156 may also be used to
re-provision VMs onto already-configured physical comput-
ers, and/or to tune the performance of an existing VDI envi-
ronment, as explained in more detail herein.

During operation, a uset, i.e., an administrator indicates to
provisioning manager 156, and provisioning manager 156
receives, a desktop pool type for cluster 116. The desktop
pool type may be selected from among a list of pre-deter-
mined desktop pool types. Desktop pool types may be coarse-
grained (e.g., non-persistent vs. persistent) or fine-grained
(e.g., a persistent engineering pool, a non-persistent data
entry pool, a non-persistent kiosk pool, etc.). Additional pool
parameters may also be provided, such as “refresh” or
“recompose” policies which dictate when machines reset to
their master OS image. These policies impact how storage
should be configured. For example, if the “refresh at logoff”
policy is selected for the pool, users never re-use a desktop
and file system corruption across sessions is impossible. By
contrast, “refresh every 14 days” or “recompose at power oft”
have different implications, allowing for possible file system
corruption across sessions, and by extension dictating a more
conservative data management policy on the underlying stor-
age layer such as providing acknowledgement of data writes
only after such writes are actually committed to stable media.
Other pool parameters relevant to the storage layer (i.e., the
virtual shared storage) include whether or not an image man-
ager and/or storage optimizer, such as View Composer from
VMware, Inc., will be used as the basis for the pool. View
Composer, for example, creates clones of a master Virtual
Machine OS image. Each clone is a delta file which grows
over time based on “copy on write” operations against the
master image. Such clone files tend to have poor de-duplica-
tion ratios on underlying storage systems capable of de-du-
plication. As a result, de-duplication should not be enabled on
the VS A or virtual storage system should the pool be based on
View Composer clones. By contrast, use of “full clones”
creates complete copies of the master OS image for each
member of the pool. Underlying storage systems can find
many common blocks in such a pool and consequently, de-
duplication functionality should be enabled in the underlying
virtual storage system. If the virtual storage system offers
in-line compression, it should be enabled for pools which use
local storage resources but in the event the hypervisor hosthas
many attached disk drives or storage manager 126 is mount-
ing LUNS from a central storage array, the administrator may
elect to disable such compression to reduce CPU overhead,
given the availability of sufficient disk bandwidth. For per-
sistent pools, various redundancy levels may be needed. Such
redundancy may be optionally configured on the virtual stor-
age layer to assist in providing needed resilience in the event
of disk failure. All of'these pool parameters are relevant to the
proper and optimal configuration of the virtual storage layer.

10

15

20

25

30

35

40

45

55

60

65

6

Provisioning manager 156 establishes the virtual shared
storage by deploying required software (e.g., the VSA in the
case of VS A-based storage), identifying the physical comput-
ers in the cluster, and/or identifying each local storage device
in each physical computer in the cluster. Establishing, or
provisioning, the virtual shared storage includes installing
software and components to each physical computer in clus-
ter 116 when required.

Each virtual shared storage modality, e.g., VSA, VSAN,
may be configurable using one or more settings, configuration
options, variables, etc. Provisioning manager 156 configures
the virtual shared storage by communicating one or more
settings to the storage managers 126. The settings communi-
cated by provisioning manager 156 are based on the selected
desktop pool type. For example, provisioning manager 156
may have pool-based settings for each available desktop pool
type. The pool-based settings may include configurable
options for improved performance of the virtual shared stor-
age. Accordingly, the process of providing pool-based set-
tings to each storage manager 126 may be referred to as
“tuning” the virtual shared storage.

In addition, the settings may be based on configurations of
storage system 122. In some embodiments, storage system
122 may include both SSD and hard drive devices. In such
embodiments, storage system 122 may be optimized to use
the SSD for frequently-accessed data and the hard drive may
be used for less frequently-accessed data.

After the virtual shared storage is tuned for the selected
pool type, provisioning manager 156 exposes the virtual
shared storage to the virtualization software 124 on each
physical computer in cluster 116. Exposing the virtual shared
storage may include attaching block devices and/or mounting
file systems. After provisioning manager 156 has established
the virtual shared storage, each physical computer is able, via
virtualization software 124, to read and write to the virtual
shared storage. As storage manager 126 provides an abstract
storage layer to virtualization software 124, virtualization
software 124 may be ignorant of the underlying virtual shared
storage modality being used or the configuration thereof. For
example, in a VSA configuration, the ZFS file system (de-
signed by Sun Microsystems of Santa Clara, Calif.) may be
employed without knowledge of virtualization software 124.

With virtual shared storage established and tuned, provi-
sioning manager 156 may deploy one or more VMs to each
physical computer in cluster 116. The deployed VMs may be
based on disk images or templates associated with each pool
type. Generally, each deployed VM is substantially identical
to other deployed VMs at the time of deployment, and so the
process is sometimes referred to as “cloning.”

While each VM 105 on a physical computer has indepen-
dent virtual resources (e.g., CPU, memory, storage devices),
each independent virtual resource may be dependent on a
corresponding underlying physical resource. As the underly-
ing physical resources are finite, they must be shared among
the VM. Accordingly, performance of virtual resources is
related to the performance of the corresponding physical
resource and the demand or usage of that physical resource by
other VMs on the same physical computer. In the case of
storage devices, a physical storage device, such as those in
storage system 126, may be capable of a known, or determin-
able, number of IOPS. The net IOPS among all VMs 105 on
a physical computer is equal to or less than the number of
IOPS deliverable by the physical storage device unless the
virtual shared storage enhances the total IOPS through cach-
ing of data, advanced coalescing of write operations, and/or
other techniques. Such enhancements may be enabled by the

US 9,417,891 B2

7

ability to configure the VDI pool type and the virtual shared
storage together as a single provisioning operation, as
described herein.

If'VMs 105 in the pool will have dynamic resource balanc-
ing, such as DRS (Dynamic Resource Scheduling) from
VMware, Inc., enabled on the hypervisor cluster, the under-
lying virtual storage layer (i.e., the virtual shared storage)
must be configured to ensure that each hypervisor member in
a cluster can read and write to each datastore exposed by the
virtual storage layer. This may require extra steps in the event
of VSA storage whereby each VSA’s datastore is mounted to
each hypervisor host in the cluster. In this scenario, a VM may
be placed on a hypervisor that is different from the hypervisor
hosting the VSA to which the VM’s datastore is attached. This
sub-optimal placement of VMs may be corrected by provi-
sioning manager 156 to ensure that VMs are co-located on the
hypervisor which hosts the VSA to which they are attached.
This process of “re-tethering” VMs must be handled by pro-
visioning manager 156 after the virtual storage layers and the
VDI pool have been initially deployed. Such re-tethering is
essential to latency reduction of the I/O, and avoiding unnec-
essary storage traffic on the shared network components.
Provisioning manager 156 may accomplish such “re-tether-
ing” by causing VMs to move onto the hypervisor hosting the
VSA storage to which they are attached, e.g., using vMotion
by VMware, Inc. or other live or non-live migration tech-
niques. This process will be an on-going process which will
make such adjustments regularly even as DRS makes its own
adjustments based on load leveling concerns. Re-tethering
will minimize the effect DRS will have over time on the
number of improperly placed VMs. Re-tethering will also
minimize the number of VMs that can be impacted by a
hypervisor failure without which, the fault domain could
eventually expand to twice the number of machines hosted on
each hypervisor. If DRS is not enabled on the VDI pool, then
VMs will automatically be co-located on the correct hyper-
visor since in this design, only the hypervisor hosting the
VM’s VSA storage will have access to the datastore in ques-
tion.

As the number of VMs 105 on a physical computer
increases, the demand on physical resources may experience
a correspondingly increased demand. In the case of storage
devices, a user’s experience, or an application’s performance
within a guest OS, may be degraded when too many VMs are
operating on a physical computer. Contrariwise, a physical
computer with too few VMs may be under-utilized and there-
fore inefficient. Determining the number of VMs 105 on a
physical computer, and the configuration of the virtual shared
storage, for sufficient performance and utilization is a multi-
variable optimization problem.

Sufficient storage performance fora VM, or guest OS, may
be defined as a minimum number of IOPS. The desktop pool
type may determine the minimum number of IOPS. Alterna-
tively, the administrator may input the minimum number of
IOPS, e.g., when the desktop pool type is provided. Initially,
provisioning manager 156 may use a heuristic to determine an
initial number of VMs to deploy on each physical computer.
Then, an optimization loop will be used to solve the optimi-
zation problem and deploy a number of VMs 105 to each
physical computer based on the solution to the optimization
problem.

In an exemplary implementation of VDI systems 100, pro-
visioning manager 156 optimizes the number of deployed
VMs 105 by coordinating a simultaneous benchmark of each
deployed VM 105. More particularly, provisioning manager
156 communicates with an agent 160 within each VM 105
(only one agent 160 being shown in FIG. 1) after provisioning

30

35

40

45

50

8

manager 156 causes each VM 105 to be powered on. Agent
160 is software executed by a guest OS and configured to
respond to commands from VMMS 130 and/or VDMS 150.
Agent 160 is instructed to initiate a storage performance
benchmark, e.g., lometer, made available by the Intel® Cor-
poration of Santa Clara, Calif. Agent 160 collects benchmark
result data from the storage performance benchmark software
and reports the result data to provisioning manager 156. Thus,
provisioning manager 156 is able to determine a maximum
storage performance, i.e., maximum IOPS, of each VM when
all VMs 105 on a physical computer are attempting to utilize
all available storage performance.

Based on the results of the benchmark, provisioning man-
ager 156 may perform an optimization on cluster 116. For
example, provisioning manager 156 may increase or decrease
the number of VMs 105 on each physical computer. Provi-
sioning manager 156 may also alter the configuration of stor-
age managers 126 to perform an optimization on cluster 116.
Forexample, if storage manager 126 isa VSA, each VS A may
be allocated a number of processor cores and RAM. For
example, each VSA may be allocated 2 processor cores and 2
gigabytes of RAM. Based on the results of the benchmark,
provisioning manager 156 may increase or decrease the num-
ber of processor cores and/or the amount of RAM.

The optimization of cluster 116 may be a multiple-iteration
process generally requiring the repeated benchmarking and
performance of optimizations of cluster 116 in response to
benchmark results. In one embodiment, optimization is
accomplished using a hill-climbing algorithm, wherein incre-
mental adjustments are made and tested to determine an opti-
mal solution. In another embodiment, a genetic algorithm is
used to solve the optimization problem. Alternatively, any
suitable algorithm may be used to determine a solution to the
optimization problem.

Each benchmarking step may take hours to execute, and so
optimizing cluster 116 may take one day or more. Provision-
ing manager 156 facilitates the efficient testing of multiple
variables and configurations. For example, if the only two
variables associated with a VSA are number of processor
cores (2, 4, 6) and amount of RAM (2 GB, 4 GB, 8 GB, 16
GB), a possible 12 combinations of processor core and
amount of RAM exist. Provisioning manager 156 automates
the testing of each combination.

While provisioning manager 156 is described as operating
on a cluster of physical computers without already-deployed
VM, it should be appreciated that provisioning manager 156
may operate on already-deployed VMs to optimize an exist-
ing system. Further, provisioning manager 156 may receive
virtual shared storage configuration changes and transmit
those changes to each storage manager 126.

FIG. 2 is a flowchart of an exemplary method 200 of
deploying and optimizing VMs in a VDI environment, such as
VDI environment 100, having virtual shared storage. Method
200 may be used with VDMS 150 (shown in FIG. 1) and/or
VMMS 130 (shown in FIG. 1). Method 200 is embodied
within a plurality of computer-executable instructions stored
in one or more memories, such as one or more computer-
readable storage mediums. The instructions are executed by
one or more processors to perform the functions described
herein.

As described in more detail herein, method 200 is executed
or performed by a provisioning manager, such as provision-
ing manager 156 (shown in FIG. 1), for providing virtual
shared storage among a cluster of hosts, tuning the virtual
shared storage based on a desktop pool type, connecting the
virtual shared storage to virtualization software on each host,
installing one or more VMs on each host, and optimizing the

US 9,417,891 B2

9

cluster by benchmarking storage performance of each VM
and adjusting the cluster based on the benchmark results.

Initially, a desktop pool type is received 210 by the provi-
sioning manager. The pool type may be selected from among
alist of pre-determined pool types. The pool type may also be
selected by an administrator using a web interface associated
with the provisioning manager. The desktop pool type may be
associated with other pool-related parameters and other vir-
tual shared storage parameters and benchmarking options,
which together form a provisioning template. Such templates
may be included in a recipe for complete provisioning opera-
tions.

Virtual shared storage is provisioned 220 using one or more
hosts in a cluster. More specifically, the provisioning manager
may transmit software and/or instructions to a storage man-
ager in each host causing the virtual shared storage abstrac-
tion layer to be created. The virtual shared storage is config-
ured 230 based on the desktop pool type. For example, if the
pool type is non-persistent, the virtual shared storage may be
configured to delay writes but acknowledge writes immedi-
ately.

The virtual shared storage is connected 240 to a virtualiza-
tion manager, such as virtualization software 124, on each
host in the cluster. More specifically, the virtual shared stor-
age may include a file system, and/or a block device, e.g., a
LUN. Once connected, the virtualization manager may read
and write from/to the virtual shared storage. The provisioning
manager may create one or more datastores within the virtual
shared storage for storing virtual disk images.

The provisioning manager provisions 250, e.g., using
VMMS 130, one or more VMs to each host in the cluster. The
number of initial VMs provided is based on a heuristic used to
estimate a number of VMs operable on each host while deliv-
ering a minimum threshold IOPS.

The provisioning manager requests 260 a storage perfor-
mance benchmark from each VM by communicating with an
agent running within each guest OS and instructing the agent
to commence a storage performance benchmark. The bench-
mark is run approximately simultaneously within each VM in
the cluster. The provisioning manager receives 270 bench-
mark results from each agent. The provisioning manager
determines 280 if the benchmark results meet a minimum
threshold within a pre-defined tolerance, such as +/-1, 2, 3, 4,
5, 10, 15, etc. percent. The minimum threshold may be pre-
determined based on the pool type or input by a user. An
average, floor, or ceiling of the benchmark results from each
VM may be used to determine if the benchmark results meet,
or exceed, a minimum threshold.

If the threshold is not met within the pre-defined tolerance,
then the provisioning manager optimizes 290 the cluster.
Optimizing 290 the cluster includes requesting 260 a storage
performance benchmark test, receiving 270 benchmark test
results, determining 280 if the benchmark results meet a
threshold, and performing 295 an optimization on the cluster
to improve the benchmark results. Optimization 290 may
occur in a loop until the threshold is met, for a pre-determined
time, or a pre-determined number of iterations, or until per-
formance targets, i.e., benchmark minimum thresholds, are
met within the pre-defined tolerance while maximizing the
number of running VMs 105.

Performing 295 an optimization on the cluster may include
resizing the pool size by increasing or decreasing the number
of VMs on each host. Performing 295 an optimization on the
cluster may also include changing the configuration of the
storage manager 126 and/or the virtual shared storage. If the
threshold is met, then method 200 is completed 297. How-

10

15

20

25

30

35

40

45

50

55

60

65

10

ever, the cluster may be optimized 290 at any time subsequent
to the initial optimization performed when the cluster is pro-
visioned.

The various embodiments described herein may employ
various computer-implemented operations involving data
stored in computer systems. For example, these operations
may require physical manipulation of physical quantities—
usually, though not necessarily, these quantities may take the
form of electrical or magnetic signals, where they or repre-
sentations of them are capable of being stored, transferred,
combined, compared, or otherwise manipulated. Further,
such manipulations are often referred to in terms, such as
producing, identifying, determining, or comparing. Any
operations described herein that form part of one or more
embodiments of the invention may be useful machine opera-
tions. In addition, one or more embodiments of the invention
also relate to a device or an apparatus for performing these
operations. The apparatus may be specially constructed for
specific required purposes, or it may be a general purpose
computer selectively activated or configured by a computer
program stored in the computer. In particular, various general
purpose machines may be used with computer programs writ-
ten in accordance with the teachings herein, or it may be more
convenient to construct a more specialized apparatus to per-
form the required operations.

The various embodiments described herein may be prac-
ticed with other computer system configurations including
hand-held devices, microprocessor systems, microprocessor-
based or programmable consumer electronics, minicomput-
ers, mainframe computers, and the like.

One or more embodiments of the present invention may be
implemented as one or more computer programs or as one or
more computer program modules embodied in one or more
computer readable media. The term computer readable
medium refers to any data storage device that can store data
which can thereafter be input to a computer system—com-
puter readable media may be based on any existing or subse-
quently developed technology for embodying computer pro-
grams in a manner that enables them to be read by a computer.
Examples of a computer readable medium include a hard
drive, network attached storage (NAS), read-only memory,
random-access memory (e.g., a flash memory device), a CD
(Compact Discs)—CD-ROM, a CD-R, or a CD-RW, a DVD
(Digital Versatile Disc), a magnetic tape, and other optical
and non-optical data storage devices. The computer readable
medium can also be distributed over a network coupled com-
puter system so that the computer readable code is stored and
executed in a distributed fashion.

Although one or more embodiments of the present inven-
tion have been described in some detail for clarity of under-
standing, it will be apparent that certain changes and modifi-
cations may be made within the scope of the claims.
Accordingly, the described embodiments are to be considered
as illustrative and not restrictive, and the scope of the claims
is not to be limited to details given herein, but may be modi-
fied within the scope and equivalents of the claims. In the
claims, elements and/or steps do not imply any particular
order of operation, unless explicitly stated in the claims.

In addition, while described virtualization methods have
generally assumed that virtual machines present interfaces
consistent with a particular hardware system, persons of ordi-
nary skill in the art will recognize that the methods described
may be used in conjunction with virtualizations that do not
correspond directly to any particular hardware system. Virtu-
alization systems in accordance with the various embodi-
ments, implemented as hosted embodiments, non-hosted
embodiments or as embodiments that tend to blur distinctions

US 9,417,891 B2

11

between the two, are all envisioned. Furthermore, various
virtualization operations may be wholly or partially imple-
mented in hardware, or implemented with traditional virtual-
ization or paravirtualization techniques. Many variations,
modifications, additions, and improvements are possible,
regardless the degree of virtualization. The virtualization
software can therefore include components ofa host, console,
or guest operating system that performs virtualization func-
tions. Plural instances may be provided for components,
operations or structures described herein as a single instance.
Finally, boundaries between various components, operations
and data stores are somewhat arbitrary, and particular opera-
tions are illustrated in the context of specific illustrative con-
figurations. Other allocations of functionality are envisioned
and may fall within the scope of the invention(s). In general,
structures and functionality presented as separate compo-
nents in exemplary configurations may be implemented as a
combined structure or component. Similarly, structures and
functionality presented as a single component may be imple-
mented as separate components. These and other variations,
modifications, additions, and improvements may fall within
the scope of the appended claims(s).
What is claimed is:
1. A virtual desktop infrastructure system, comprising:
a cluster of hosts each having a storage system and a
storage manager; and
avirtual desktop management server configured to manage
aplurality of virtual desktops of a desktop pool type, the
desktop pool type associated with one or more pool
based parameters, the virtual desktop management
server having a provisioning manager, said provisioning
manager configured to:
provision virtual shared storage using the storage man-
ager of each host in said cluster of hosts including
tuning configuration settings of the virtual shared
storage based on the one or more pool based param-
eters associated with the desktop pool type, the con-
figuration settings including each of:
whether de-duplication is enabled in the virtual
shared storage;
whether in-line compression is enabled in the virtual
shared storage;
level of redundancy in the virtual shared storage; and
whether write acknowledgements are issued immedi-
ately irrespective of whether the write has been
committed or only after the write was committed to
stable media;
provision a plurality of virtual machines to each host in
said cluster of hosts, the plurality of virtual machines
configured to execute the plurality of virtual desktops
of the desktop pool type;
receive a first storage performance benchmark result
from each of the virtual machines that indicates the
storage performance of said each virtual machine
when the virtual machine is attempting to utilize the
virtual shared storage;
determine if the first storage performance benchmark
results meet a threshold that is designated for the
desktop pool type; and
execute an optimization loop to optimize the virtual
shared storage by periodically (a) modifying one or
more of the configuration settings of the virtual shared
storage and (b) modifying an allocation of processor
cores or random access memory (RAM) allocated to
the storage manager of a subset of said cluster ofhosts
based on a determination that the first storage perfor-
mance benchmark results do not meet the threshold.

w

10

15

20

25

30

35

45

50

55

65

12

2. The virtual desktop infrastructure system of claim 1,
wherein the provisioning manager is further configured to:

receive a second storage performance benchmark result

from each of the virtual machines;

determine if the second storage performance benchmark

results meet the threshold; and

modify the allocation of processor cores or random access

memory (RAM) allocated to the storage manager on a
second subset of said cluster of hosts based on a deter-
mination that the second storage performance bench-
mark results do not meet the threshold.

3. The virtual desktop infrastructure system of claim 1,
further comprising: adjusting a number of virtual machines
associated with each host based on a determination that the
first storage performance benchmark results do not meet the
threshold.

4. The virtual desktop infrastructure of claim 1, wherein
said storage manager is a virtual storage appliance.

5. The virtual desktop infrastructure system of claim 1,
wherein the provisioning manager is further configured to
request the first storage performance benchmark result from
each of the virtual machines.

6. The virtual desktop infrastructure system of claim 1,
wherein the storage performance benchmark result represents
atleast one of a number of input/output operations per second
or a measurement of latency.

7. The virtual desktop infrastructure of claim 1, wherein the
desktop pool type indicates whether the plurality of virtual
desktops is persistent or non-persistent; and wherein:

if the desktop pool type is non-persistent, the provisioning

manager configures the virtual shared storage to
acknowledge writes immediately irrespective of
whether the writes have been committed;

otherwise, if the desktop pool type is persistent, the provi-

sioning manager configures the virtual shared storage to
acknowledge writes only after the writes have been com-
mitted.

8. The virtual desktop infrastructure of claim 1, wherein
tuning configuration settings further comprises:

disabling de-duplication in the virtual shared storage if the

virtual desktops are based on a master virtual machine
operating system image and each virtual desktop is asso-
ciated with a respective delta file which grows over time
based on copy-on-write operations;

otherwise enabling de-duplication in the virtual shared

storage system.

9. The virtual desktop infrastructure system of claim 1,
wherein the storage manager is a virtual storage appliance
(VSA) and wherein the provisioning manager is further con-
figured to:

periodically re-tether one or more of the virtual machines

to be co-located on a hypervisor that hosts the VSA if
dynamic resource balancing functionality causes the one
or more virtual machines to become located on a differ-
ent hypervisor from the hypervisor hosting the VSA.

10. At least one non-transitory computer-readable storage
medium having computer-executable instructions embodied
thereon, wherein, when executed by at least one processor,
the computer-executable instructions cause the at least one
processor to:

determine a desktop pool type associated with a plurality of

virtual desktops, the desktop pool type associated with
one or more pool based parameters;

provision virtual shared storage within a cluster of hosts

including tuning configuration settings of the virtual
shared storage based on the one or more pool based

US 9,417,891 B2

13

parameters associated with the desktop pool type, the

configuration settings including each of:

whether de-duplication is enabled in the virtual shared
storage;

whether in-line compression is enabled in the virtual
shared storage;

level of redundancy in the virtual shared storage; and

whether write acknowledgements are issued immedi-
ately irrespective of whether the writes has been com-
mitted or only after the write was committed to stable
media;

provision a plurality of virtual machines to each host in the

cluster ofhosts, the plurality of virtual machines config-
ured to execute the plurality of virtual desktops of the
desktop pool type;

receive a first storage performance benchmark result from

each of the virtual machines that indicates the storage
performance of said each virtual machine when the vir-
tual machine is attempting to utilize the virtual shared
storage;

determine if the first storage performance benchmark

results meet a threshold that is designated for the desk-
top pool type; and

execute an optimization loop to optimize the virtual shared

storage by periodically (a) modifying one or more of the
configuration settings of the virtual shared storage and
(b) moditying an allocation of processor cores or ran-
dom access memory (RAM) allocated to the storage
manager on at least one of the cluster of hosts based on
adetermination that the first storage performance bench-
mark results do not meet the threshold.

11. The at least one non-transitory computer-readable stor-
age medium of claim 10, wherein the computer-executable
instructions further cause the at least one processor to:

receive a second storage performance benchmark result

from each of the virtual machines;

determine if the second storage performance benchmark

results meet the threshold; and

modify the allocation of processor cores or random access

memory (RAM) allocated to the storage manager on at
least one of the cluster of hosts based on a determination
that the second storage performance benchmark results
do not meet the threshold.

12. The at least one non-transitory computer-readable stor-
age medium of claim 10, wherein the computer-executable
instructions further cause the at least one processor to connect
the virtual shared storage to a virtualization software that is
associated with each host in the cluster of hosts.

13. The non-transitory computer readable storage medium
of claim 10, wherein tuning configuration settings further
comprises:

disabling de-duplication in the virtual shared storage if the

virtual desktops are based on a master virtual machine
operating system image and each virtual desktop is asso-
ciated with a respective delta file which grows over time
based on copy-on-write operations;

otherwise enabling de-duplication in the virtual shared

storage system.

14. A method of provisioning a virtual desktop infrastruc-
ture, the method comprising:

determining a desktop pool type associated with a plurality

of virtual desktops, the desktop pool type associated
with one or more pool-related parameters;
provisioning virtual shared storage within a cluster ofhosts
including tuning configuration settings of the virtual
shared storage based on the one or more pool-related

10

15

20

25

30

35

40

45

50

55

60

65

14

parameters associated with the desktop pool type, the

configuration settings including each of:

whether de-duplication is enabled in the virtual shared
storage;

whether in-line compression is enabled in the virtual
shared storage;

level of redundancy in the virtual shared storage; and

whether write acknowledgements are issued immedi-
ately irrespective of whether the writes has been com-
mitted or only after the write was committed to stable
media;

provisioning a plurality of virtual machines to each host in

the cluster of hosts, the plurality of virtual machines
configured to execute the plurality of virtual desktops of
the desktop pool type;

receiving a first storage performance benchmark result

from each of the virtual machines that indicates the
storage performance of said each virtual machine when
the virtual machine is attempting to utilize the virtual
shared storage;

determining if the first storage performance benchmark

results meet a threshold that is designated for the desk-
top pool type; and

execute an optimization loop to optimize the virtual shared

storage by periodically (a) modifying one or more of the
configuration settings of the virtual shared storage and
(b) moditying an allocation of processor cores or ran-
dom access memory (RAM) allocated to the storage
manager on at least one of the cluster of hosts based on
adetermination that the first storage performance bench-
mark results do not meet the threshold.

15. The method of claim 14, further comprising:

receiving a second storage performance benchmark result

from each of the virtual machines;

determining if the second storage performance benchmark

results meet the threshold; and

modify the allocation of processor cores or random access

memory (RAM) allocated to the storage manager of at
least one of the cluster of hosts based on a determination
that the second storage performance benchmark results
do not meet the threshold.

16. The method of claim 14, further comprising requesting
the first storage performance benchmark from each of the
virtual machines.

17. The method of claim 14, further comprising connecting
the virtual shared storage to a virtualization software that is
associated with each host in the cluster of hosts.

18. The method of claim 14, wherein receiving a first
storage performance benchmark result comprises receiving at
least one of a number of input/output operations per second or
a measurement of latency.

19. The method of claim 14 wherein the desktop pool type
indicates whether the plurality of virtual desktops is persis-
tent or non-persistent; and wherein configuring the virtual
shared storage further comprises:

if the desktop pool type is non-persistent, configuring the

virtual shared storage to acknowledge writes immedi-
ately irrespective of whether the writes have been com-
mitted;

otherwise, if the desktop pool type is persistent, configur-

ing the virtual shared storage to acknowledge writes
only after the writes have been committed.

20. The method of claim 14, wherein tuning configuration
settings further comprises:

disabling de-duplication in the virtual shared storage if the

virtual desktops are based on a master virtual machine
operating system image and each virtual desktop is asso-

US 9,417,891 B2
15 16

ciated with a respective delta file which grows over time
based on copy-on-write operations;

otherwise enabling de-duplication in the virtual shared
storage system.

